3.468 \(\int \frac{\cos (c+d x) \cot ^3(c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx\)

Optimal. Leaf size=125 \[ -\frac{2 \cos (c+d x)}{d \sqrt{a \sin (c+d x)+a}}+\frac{\cot (c+d x)}{4 d \sqrt{a \sin (c+d x)+a}}+\frac{9 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{4 \sqrt{a} d}-\frac{\cot (c+d x) \csc (c+d x)}{2 d \sqrt{a \sin (c+d x)+a}} \]

[Out]

(9*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(4*Sqrt[a]*d) - (2*Cos[c + d*x])/(d*Sqrt[a + a*Si
n[c + d*x]]) + Cot[c + d*x]/(4*d*Sqrt[a + a*Sin[c + d*x]]) - (Cot[c + d*x]*Csc[c + d*x])/(2*d*Sqrt[a + a*Sin[c
 + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.543092, antiderivative size = 125, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.276, Rules used = {2881, 2751, 2649, 206, 3044, 2984, 2985, 2773} \[ -\frac{2 \cos (c+d x)}{d \sqrt{a \sin (c+d x)+a}}+\frac{\cot (c+d x)}{4 d \sqrt{a \sin (c+d x)+a}}+\frac{9 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{4 \sqrt{a} d}-\frac{\cot (c+d x) \csc (c+d x)}{2 d \sqrt{a \sin (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]*Cot[c + d*x]^3)/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(9*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(4*Sqrt[a]*d) - (2*Cos[c + d*x])/(d*Sqrt[a + a*Si
n[c + d*x]]) + Cot[c + d*x]/(4*d*Sqrt[a + a*Sin[c + d*x]]) - (Cot[c + d*x]*Csc[c + d*x])/(2*d*Sqrt[a + a*Sin[c
 + d*x]])

Rule 2881

Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[1/d^4, Int[(d*Sin[e + f*x])^(n + 4)*(a + b*Sin[e + f*x])^m, x], x] + Int[(d*Sin[e + f*x])^
n*(a + b*Sin[e + f*x])^m*(1 - 2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&
  !IGtQ[m, 0]

Rule 2751

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*d*m + b*c*(m + 1))/(b*(m + 1)), Int[(a + b*Sin
[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] &&  !LtQ[m,
-2^(-1)]

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3044

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^
m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n +
2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b
*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0
])

Rule 2984

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^(n + 1))/(f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 2985

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Dist[(A*b - a*B)/(b*c - a*d), Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[(
B*c - A*d)/(b*c - a*d), Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin{align*} \int \frac{\cos (c+d x) \cot ^3(c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx &=\int \frac{\sin (c+d x)}{\sqrt{a+a \sin (c+d x)}} \, dx+\int \frac{\csc ^3(c+d x) \left (1-2 \sin ^2(c+d x)\right )}{\sqrt{a+a \sin (c+d x)}} \, dx\\ &=-\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 d \sqrt{a+a \sin (c+d x)}}+\frac{\int \frac{\csc ^2(c+d x) \left (-\frac{a}{2}-\frac{5}{2} a \sin (c+d x)\right )}{\sqrt{a+a \sin (c+d x)}} \, dx}{2 a}-\int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx\\ &=-\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}+\frac{\cot (c+d x)}{4 d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 d \sqrt{a+a \sin (c+d x)}}+\frac{\int \frac{\csc (c+d x) \left (-\frac{9 a^2}{4}-\frac{1}{4} a^2 \sin (c+d x)\right )}{\sqrt{a+a \sin (c+d x)}} \, dx}{2 a^2}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{\sqrt{a} d}-\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}+\frac{\cot (c+d x)}{4 d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 d \sqrt{a+a \sin (c+d x)}}-\frac{9 \int \csc (c+d x) \sqrt{a+a \sin (c+d x)} \, dx}{8 a}+\int \frac{1}{\sqrt{a+a \sin (c+d x)}} \, dx\\ &=\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{2} \sqrt{a+a \sin (c+d x)}}\right )}{\sqrt{a} d}-\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}+\frac{\cot (c+d x)}{4 d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 d \sqrt{a+a \sin (c+d x)}}-\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{d}+\frac{9 \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{4 d}\\ &=\frac{9 \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{4 \sqrt{a} d}-\frac{2 \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}+\frac{\cot (c+d x)}{4 d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x)}{2 d \sqrt{a+a \sin (c+d x)}}\\ \end{align*}

Mathematica [B]  time = 3.92684, size = 296, normalized size = 2.37 \[ \frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right ) \left (64 \sin \left (\frac{1}{2} (c+d x)\right )-64 \cos \left (\frac{1}{2} (c+d x)\right )+4 \tan \left (\frac{1}{4} (c+d x)\right )+4 \cot \left (\frac{1}{4} (c+d x)\right )-\csc ^2\left (\frac{1}{4} (c+d x)\right )+\sec ^2\left (\frac{1}{4} (c+d x)\right )-\frac{8 \sin \left (\frac{1}{4} (c+d x)\right )}{\cos \left (\frac{1}{4} (c+d x)\right )-\sin \left (\frac{1}{4} (c+d x)\right )}+\frac{8 \sin \left (\frac{1}{4} (c+d x)\right )}{\sin \left (\frac{1}{4} (c+d x)\right )+\cos \left (\frac{1}{4} (c+d x)\right )}+\frac{2}{\left (\cos \left (\frac{1}{4} (c+d x)\right )-\sin \left (\frac{1}{4} (c+d x)\right )\right )^2}-\frac{2}{\left (\sin \left (\frac{1}{4} (c+d x)\right )+\cos \left (\frac{1}{4} (c+d x)\right )\right )^2}+36 \log \left (-\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )+1\right )-36 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )-\cos \left (\frac{1}{2} (c+d x)\right )+1\right )-8\right )}{32 d \sqrt{a (\sin (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]*Cot[c + d*x]^3)/Sqrt[a + a*Sin[c + d*x]],x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(-8 - 64*Cos[(c + d*x)/2] + 4*Cot[(c + d*x)/4] - Csc[(c + d*x)/4]^2 + 3
6*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 36*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + Sec[(c + d*
x)/4]^2 + 2/(Cos[(c + d*x)/4] - Sin[(c + d*x)/4])^2 - (8*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] - Sin[(c + d*x)/4
]) - 2/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4])^2 + (8*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4]) +
64*Sin[(c + d*x)/2] + 4*Tan[(c + d*x)/4]))/(32*d*Sqrt[a*(1 + Sin[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 1.013, size = 150, normalized size = 1.2 \begin{align*} -{\frac{1+\sin \left ( dx+c \right ) }{4\, \left ( \sin \left ( dx+c \right ) \right ) ^{2}\cos \left ( dx+c \right ) d}\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) } \left ( 8\,\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }{a}^{3/2} \left ( \sin \left ( dx+c \right ) \right ) ^{2}-9\,{\it Artanh} \left ({\frac{\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }}{\sqrt{a}}} \right ) \left ( \sin \left ( dx+c \right ) \right ) ^{2}{a}^{2}+ \left ( -a \left ( \sin \left ( dx+c \right ) -1 \right ) \right ) ^{{\frac{3}{2}}}\sqrt{a}+\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }{a}^{{\frac{3}{2}}} \right ){a}^{-{\frac{5}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x)

[Out]

-1/4*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)/a^(5/2)*(8*(-a*(sin(d*x+c)-1))^(1/2)*a^(3/2)*sin(d*x+c)^2-9*arct
anh((-a*(sin(d*x+c)-1))^(1/2)/a^(1/2))*sin(d*x+c)^2*a^2+(-a*(sin(d*x+c)-1))^(3/2)*a^(1/2)+(-a*(sin(d*x+c)-1))^
(1/2)*a^(3/2))/sin(d*x+c)^2/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{4} \csc \left (d x + c\right )^{3}}{\sqrt{a \sin \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^4*csc(d*x + c)^3/sqrt(a*sin(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [B]  time = 1.13629, size = 922, normalized size = 7.38 \begin{align*} \frac{9 \,{\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \,{\left (\cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a} - 9 \, a \cos \left (d x + c\right ) +{\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) - 4 \,{\left (8 \, \cos \left (d x + c\right )^{3} + 9 \, \cos \left (d x + c\right )^{2} -{\left (8 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 11\right )} \sin \left (d x + c\right ) - 10 \, \cos \left (d x + c\right ) - 11\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{16 \,{\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2} - a d \cos \left (d x + c\right ) - a d +{\left (a d \cos \left (d x + c\right )^{2} - a d\right )} \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/16*(9*(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)*sqrt(a)*log((
a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) -
 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x +
c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) - 4*(8*cos(d
*x + c)^3 + 9*cos(d*x + c)^2 - (8*cos(d*x + c)^2 - cos(d*x + c) - 11)*sin(d*x + c) - 10*cos(d*x + c) - 11)*sqr
t(a*sin(d*x + c) + a))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2 - a*d*cos(d*x + c) - a*d + (a*d*cos(d*x + c)^2
 - a*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*csc(d*x+c)**3/(a+a*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.39612, size = 748, normalized size = 5.98 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/8*((36*sqrt(2)*sqrt(a)*arctan((sqrt(2)*sqrt(a) + sqrt(a))/sqrt(-a)) - 18*sqrt(2)*sqrt(-a)*log(sqrt(2)*sqrt(a
) + sqrt(a)) + 54*sqrt(a)*arctan((sqrt(2)*sqrt(a) + sqrt(a))/sqrt(-a)) - 27*sqrt(-a)*log(sqrt(2)*sqrt(a) + sqr
t(a)) + 62*sqrt(2)*sqrt(-a) + 82*sqrt(-a))*sgn(tan(1/2*d*x + 1/2*c) + 1)/(2*sqrt(2)*sqrt(-a)*sqrt(a) + 3*sqrt(
-a)*sqrt(a)) + (((tan(1/2*d*x + 1/2*c)/sgn(tan(1/2*d*x + 1/2*c) + 1) - 2/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/
2*d*x + 1/2*c) + 17/sgn(tan(1/2*d*x + 1/2*c) + 1))*tan(1/2*d*x + 1/2*c) - 18/sgn(tan(1/2*d*x + 1/2*c) + 1))/sq
rt(a*tan(1/2*d*x + 1/2*c)^2 + a) - 18*arctan(-(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 +
a))/sqrt(-a))/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c) + 1)) + 9*log(abs(-sqrt(a)*tan(1/2*d*x + 1/2*c) + sqrt(a*tan(
1/2*d*x + 1/2*c)^2 + a)))/(sqrt(a)*sgn(tan(1/2*d*x + 1/2*c) + 1)) + 2*((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*
tan(1/2*d*x + 1/2*c)^2 + a))^3 - 2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*sqrt(
a) + (sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))*a + 2*a^(3/2))/(((sqrt(a)*tan(1/2*d*x
 + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a)^2*sgn(tan(1/2*d*x + 1/2*c) + 1)))/d